skip to main content
US FlagAn official website of the United States government
dot gov icon
Official websites use .gov
A .gov website belongs to an official government organization in the United States.
https lock icon
Secure .gov websites use HTTPS
A lock ( lock ) or https:// means you've safely connected to the .gov website. Share sensitive information only on official, secure websites.


Search for: All records

Creators/Authors contains: "King, John S"

Note: When clicking on a Digital Object Identifier (DOI) number, you will be taken to an external site maintained by the publisher. Some full text articles may not yet be available without a charge during the embargo (administrative interval).
What is a DOI Number?

Some links on this page may take you to non-federal websites. Their policies may differ from this site.

  1. Zhang, Jianhua (Ed.)
    Abstract The influence of aquaporin (AQP) activity on plant water movement remains unclear, especially in plants subject to unfavorable conditions. We applied a multitiered approach at a range of plant scales to (i) characterize the resistances controlling water transport under drought, flooding, and flooding plus salinity conditions; (ii) quantify the respective effects of AQP activity and xylem structure on root (Kroot), stem (Kstem), and leaf (Kleaf) conductances; and (iii) evaluate the impact of AQP-regulated transport capacity on gas exchange. We found that drought, flooding, and flooding plus salinity reduced Kroot and root AQP activity in Pinus taeda, whereas Kroot of the flood-tolerant Taxodium distichum did not decline under flooding. The extent of the AQP control of transport efficiency varied among organs and species, ranging from 35–55% in Kroot to 10–30% in Kstem and Kleaf. In response to treatments, AQP-mediated inhibition of Kroot rather than changes in xylem acclimation controlled the fluctuations in Kroot. The reduction in stomatal conductance and its sensitivity to vapor pressure deficit were direct responses to decreased whole-plant conductance triggered by lower Kroot and larger resistance belowground. Our results provide new mechanistic and functional insights on plant hydraulics that are essential to quantifying the influences of future stress on ecosystem function. 
    more » « less
  2. null (Ed.)
  3. Abstract Drought frequency and intensity are projected to increase throughout the southeastern USA, the natural range of loblolly pine (Pinus taeda L.), and are expected to have major ecological and economic implications. We analyzed the carbon and oxygen isotopic compositions in tree ring cellulose of loblolly pine in a factorial drought (~30% throughfall reduction) and fertilization experiment, supplemented with trunk sap flow, allometry and microclimate data. We then simulated leaf temperature and applied a multi-dimensional sensitivity analysis to interpret the changes in the oxygen isotope data. This analysis found that the observed changes in tree ring cellulose could only be accounted for by inferring a change in the isotopic composition of the source water, indicating that the drought treatment increased the uptake of stored moisture from earlier precipitation events. The drought treatment also increased intrinsic water-use efficiency, but had no effect on growth, indicating that photosynthesis remained relatively unaffected despite 19% decrease in canopy conductance. In contrast, fertilization increased growth, but had no effect on the isotopic composition of tree ring cellulose, indicating that the fertilizer gains in biomass were attributable to greater leaf area and not to changes in leaf-level gas exchange. The multi-dimensional sensitivity analysis explored model behavior under different scenarios, highlighting the importance of explicit consideration of leaf temperature in the oxygen isotope discrimination (Δ18Oc) simulation and is expected to expand the inference space of the Δ18Oc models for plant ecophysiological studies. 
    more » « less
  4. Abstract Considering the temporal responses of carbon isotope discrimination (Δ13C) to local water availability in the spatial analysis of Δ13C is essential for evaluating the contribution of environmental and genetic facets of plant Δ13C. Using tree-ring Δ13C from years with contrasting water availability at 76 locations across the natural range of loblolly pine, we decomposed site-level Δ13C signals to maximum Δ13C in well-watered conditions (Δ13Cmax) and isotopic drought sensitivity (m) as a change in Δ13C per unit change of Palmer’s Drought Severity Index (PDSI). Site water status, especially the tree lifetime average PDSI, was the primary factor affecting Δ13Cmax. The strong spatial correlation exhibited by m was related to both genetic and environmental factors. The long-term average water availability during the period relevant to trees as indicated by lifetime average PDSI correlated with Δ13Cmax, suggesting acclimation in tree gas-exchange traits, independent of incident water availability. The positive correlation between lifetime average PDSI and m indicated that loblolly pines were more sensitive to drought at mesic than xeric sites. The m was found to relate to a plant’s stomatal control and may be employed as a genetic indicator of efficient water use strategies. Partitioning Δ13C to Δ13Cmax and m provided a new angle for understanding sources of variation in plant Δ13C, with several fundamental and applied implications. 
    more » « less